
Friend.tech App UX lack of synchronization +
excessive ETH sent to the contract not returned /
locked

1. Issue description
There are two issues here resulting in users losing money when interacting with the
Friend.tech application. First problem is related to the lack of UX synchronization with the
current blockchain status resulting in using outdated prices to fill out the transaction data.
Secondly when such a situation happens (usually in high volume keys, but it’s also possible
when a user has bad luck and someone sells a key just before he hits buy) the excessive
ETH is locked forever in the FT contract (0xcf205808ed36593aa40a44f10c7f7c2f67d4a4d4)
as there’s no refund or withdraw functions implemented.

As of this writing, 113,924 transactions have been identified with this issue, leading to an
excess of 442 ETH locked in the smart contract (2.64% of the Total Value Locked).
SQL: TVL according to smart contract logs

2. Impact
Who is affected:

● All users using the Friend.tech application to buy keys

Concerning the affected funds:

Filtering for transactions executed through the UI and where the difference between sent
ETH and “should have sent” ETH is explainable through differences in supply (i.e. smart
contract is saying that a trader bought key number 10, whereas ETH sent to the contract
corresponds to what should have been paid to acquire a key when supply is 12), we get that
43,054 transactions have resulted in locking 187 excess ETH and affecting 14,390 traders.

SQL: Filtered transactions where excess ETH is sent

About these transactions: There are still anomalous cases (for example supply differences of
10+) that are probably not derived from natural app usage. However, most supply
differences (+90%) are 1,2 or 3 as seen in the image below:

https://dune.com/queries/3267474
https://dune.com/queries/3270071

SQL: Transactions by supply difference

Average difference per transaction: 0.0035119224186117423ETH ($8)
Median difference per transaction: 0.0008325624814461224ETH ($1,96)

There are no transactions where the amount of ETH sent to buy keys is lower than what it
should have been. In the same way, there are no transactions where the smart contract is
sending unexpected ETH amounts to the trader, subject or the protocol

Below is a link that aims to show the issue addressed in this report. The highly anticipated
arrival of CBBank to Friend.Tech resulted in many transactions where users paid excess
ETH to acquire this key.

This link shows every transaction ordered by block number (from earliest to latest).
SC_supply means what was the supply when the user bought according to the smart
contract and bt_supply means what was the supply according to the amount of ETH sent. In
the transactions where both values are equal, as expected, the value in bt_supply is null.

CBBank's key launch as an example

3. Proof of Concept
To reproduce the issue follow the steps below - it can be done using the same account so its
easier:

1. Open two browser windows on a profile you own a key and click ‘buy’ on both

https://dune.com/queries/3270877
https://dune.com/queries/3273020

2. On the left window click ‘sell’ -> ‘Complete Sale’ and wait for it to be
completed

3. After the sale completes click ‘Buy’ on the right side window

4. After it loads you can see it shows the price that is valid for 3 keys, while in
fact right now we have only 2

5. So we click ‘Complete Purchase’ and the transaction goes through costing us
more then we should have paid

6. Excessive ETH will get locked in the smart contract - below is the transaction
in question:

https://basescan.org/tx/0x632324c5f180408f2d6413e500592e9e587b758ea7d74b85b5d617
5ccc903ce5

Link to a PoC video demonstrating how to reproduce the issue:
https://overflow.pl/various/ft_poc_video_ux_desync.mov

4. Recommendations
● Application UX

○ On each buy and sell clicks within the app, state of the blockchain
should be synchronized and current prices updated

● Smart contract
○ Implement a functionality to refund ETH to users in case they sent

more than expected

https://basescan.org/tx/0x632324c5f180408f2d6413e500592e9e587b758ea7d74b85b5d6175ccc903ce5
https://basescan.org/tx/0x632324c5f180408f2d6413e500592e9e587b758ea7d74b85b5d6175ccc903ce5
https://overflow.pl/various/ft_poc_video_ux_desync.mov

○ Implement a withdrawal function so the funds are not stuck there
forever, will be also useful in case someone sends ETH to the contract
directly by a mistake

5. Timeline

14/12/2023 - vulnerability report sent to friend.tech bug bounty program
20/12/2023 - due to lack of response, a second attempt to establish a contact was made
20/12/2023 - got a response - "All transaction inputs and outputs match the user's explicit
specifications. Report is a UX recommendation which is out of the scope of bounty rewards."
20/12/2023 - a follow up email was sent disputing the decision
05/01/2024 - due to no response a follow up email was sent, no response
01/02/2024 - the issue has been made public

6. Authors
@ELaszlo_
@h0wlu

https://twitter.com/ELaszlo_
https://twitter.com/h0wlu

